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Communicated by V.V. Anisovich

Abstract. The energy level displacements of the excited n� states of pionic hydrogen and the contribution
of the ns → 1s transitions and the (π−p)Coul → 1s transitions of the π−p pair, coupled by the attractive
Coulomb field in the S-wave state with a continuous energy spectrum, to the shift of the energy level
of the ground state of pionic hydrogen, caused by strong low-energy interactions, are calculated within a
quantum field theoretic, relativistic covariant and model-independent approach.

PACS. 13.75.Gx Pion-baryon interactions – 11.10.St Bound and unstable states; Bethe-Salpeter equations
– 21.30.Fe Forces in hadronic systems and effective interactions – 31.15.Ar Ab initio calculations

1 Introduction

Pionic hydrogen Aπp, a hydrogen-like mesoatom with the
electron replaced by the π− meson, is a nice laboratory for
the experimental investigation of strong low-energy inter-
actions and the mechanisms of spontaneous breaking of
chiral symmetry [1,2].

As has been found by Deser, Goldberger, Baumann
and Thirring [3] (see also [4–8] and the textbook by Eric-
son and Weise [9]) due to strong low-energy interactions
the energy level of the ground state of pionic hydrogen
acquires the following shift and width:
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This is the so-called DGBT formula, fπ−p
0 (0) is the S-
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threshold, a1/2
0 and a3/2

0 are the S-wave scattering lengths
of πN scattering with isospin I = 1/2 and I = 3/2,
Qπ0n = 28.040MeV is the relative momentum of the
π0n pair at relative momentum zero of the π−p pair, and
Ψ1s(0) = 1/

√
πa3

B is the wave function of pionic hydrogen
in the ground state at the origin r = 0 1. The imaginary
part of the amplitude fπ−p

0 (0) in (1.1) is defined by the
inelastic channel π− + p→ π0 + n.

The DGBT formula (1.1) can be transcribed into an
equivalent form [3] (see also [9])
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where E1s = −α/2aB = −α2µ/2 = − 3234.940 eV is the
binding energy of the ground state of pionic hydrogen and
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are the S-wave scattering lengths of π−p scattering.

1 Here aB = 1/αµ = 222.664 fm is the Bohr radius, where
α = e2 = 1/137.036 is the fine-structure constant and µ =
mπ−mp/(mπ− + mp) = 121.497MeV is the reduced mass of
the π−p pair calculated for mπ− = 139.570MeV and mp =
938.272MeV [10].



414 The European Physical Journal A

The theoretical accuracy of the DGBT formula with
respect to next-to-leading–order corrections caused by
strong low-energy interactions has been recently analysed
in [11]. As has been shown the second-order correction
to the shift of the energy level of the ground state
relative to the first order makes up (0.111 ± 0.006)%.
In turn, the derivation of the energy level displacement
of the ground state of pionic hydrogen, carried out
within a quantum field theoretic, relativistic covariant
and model-independent approach [11], leads to the
non-perturbative correction of order of 1%. Hence, strong
low-energy interactions cannot compete with contri-
butions of QCD isospin-breaking and electromagnetic
interactions [12]. The predicted value of these corrections
is δε = (−7.3± 2.9)% [12] 2.

Experimentally [1,2], the energy level displacement of
the ground state (ε1s, Γ1s) can be obtained by measuring
the np→ 1s transitions in pionic hydrogen for n = 2, 3, 4,
where n is the principle quantum number of the bound np
state of pionic hydrogen with the angular momentum � =
1. As a result, the energy level displacements (εnp, Γnp)
of the excited np states turn out to be entangled into the
definition of (ε1s, Γ1s).

Within a potential model approach, the shift of the
energy level of the excited ns state of pionic hydrogen has
been calculated by Trueman [4] and Ericson, Loiseau and
Wycech [8], who have also given a systematic analysis of
electromagnetic corrections, and of the excited n� state by
Partensky and Ericson [5], Lambert [6] and Deloff [7].

The main aims of this paper are i) to derive the general
formula for the energy level displacement of the n� excited
state of pionic hydrogen in terms of the partial-wave scat-
tering lengths of πN scattering within a quantum field the-
oretic, relativistic covariant and model-independent ap-
proach developed in [11] (see also [14]), ii) to give an an-
alytical expression and a numerical value of the energy
level displacement of the np excited state of pionic hy-
drogen, iii) to calculate the second-order correction to
the shift of the energy level of the ground state of pio-
nic hydrogen caused by the ns → 1s transitions and the
(π−p)Coul → 1s transitions of the π−p pair, coupled by
the attractive Coulomb field in the S-wave state with a
continuous energy spectrum [15], and iv) to compare our
results with those obtained in [4–9].

As has been shown in [11] (see also [14]), the energy
level displacement of the ground state of pionic hydrogen
can be represented in terms of the momentum integrals:
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2 It is likely that the correction obtained in [11] is also in-
cluded in that calculated by Gasser et al. [12] within Chiral
Perturbation Theory (ChPT) [13]. The analysis of this ques-
tion is in progress.

where M(π−(�q )p(−�q, σp) → π−(�k )p(−�k, σp)) is the am-
plitude of π−p scattering for arbitrary relative momenta of
the π−p pair, Eπ− =
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p

are the energies of the π−-meson and the proton, σp =
±1/2 is the polarization of the proton, Φ1s(�k ) is the wave
function of the ground state of pionic hydrogen in the mo-
mentum representation normalized by∫

d3k

(2π)3
|Φ1s(�k )|2 = 1 . (1.5)

Near threshold the r.h.s. of (1.4) can be rewritten as fol-
lows:
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where we have set [16]

M(π−(�q )p(−�q, σp) → π−(�k )p(−�k, σp)) =

8π (mπ− +mp) f
π−p
0 (

√
kq). (1.7)

Due to the wave functions Φ†
1s(�k ) and Φ1s(�q ), the inte-

grand of the momentum integrals in (1.4) and (1.6) is
concentrated around k ∼ q ∼ 1/aB = 0.887MeV. This
justifies the application of the low-energy limit k, q → 0
to the calculation of the amplitude of π−p scattering [11].
As a result, the r.h.s. of (1.6) reduces to the form of the
DGBT formula with an additional non-perturbative cor-
rection of order of 1%, caused by the smearing of the wave
function of the ground state of pionic hydrogen around the
origin [11].

The paper is organized as follows. In sect. 2 we con-
struct the wave function of the excited n� state of pionic
hydrogen following the prescription developed in [11]. In
sects. 3 and 4 following [11] we calculate the shift and
the width of the energy level of the excited n� state of
pionic hydrogen within a quantum field theoretic, rela-
tivistic covariant and model-independent approach devel-
oped in [11]. In sect. 5 we calculate analytically and give a
numerical estimate of the energy level displacement of the
excited np state of pionic hydrogen. The shift of the energy
level of the np state is found in analytical and numerical
agreement with the result obtained by Ericson and Weise
within a potential model approach [9]. In sect. 6 we calcu-
late the contribution of the ns → 1s transitions and the
(π−p)Coul → 1s transitions of the π−p pair, coupled by the
attractive Coulomb field in the S-wave state with a con-
tinuous energy spectrum, to the shift of the energy level
of the ground state of pionic hydrogen induced by strong
low-energy interactions. We find that this contribution rel-
ative to the DGBT shift makes up 0.076%. In the conclu-
sion we discuss the obtained results. In the appendix we
calculate the momentum integral defining the energy level
displacement of the np state of pionic hydrogen.
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2 Wave function of n� state of pionic
hydrogen

The wave function of pionic hydrogen in the 1s state has
been defined as [11]
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energy and the momentum of pionic hydrogen, M (1s)
A =

mp + mπ− + E1s is the mass of pionic hydrogen in the
1s bound state, σp = ±1/2 is the proton polarization;
Φ1s(�kπ−) is the wave function of the 1s state of pionic hy-
drogen in the momentum representation. It is normalized
to unity (1.5). The wave function |π−(�kπ−)p(�kp, σp)〉 we
define as [11]
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where c†π−(�kπ−) and a†p(�kp, σp) are creation operators of
the π−-meson with momentum �kπ− and the proton with
momentum �kp and polarization σp = ±1/2. They sat-
isfy standard relativistic covariant commutation and anti-
commutation relations:
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The wave function (2.1) is normalized by
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This is a relativistic covariant normalization of the wave
function. The wave function (2.1) has been applied to the
derivation of the energy level displacement of the ground
state of pionic hydrogen within a quantum field the-
oretic, relativistic covariant and model-independent ap-
proach [11].

In analogy with the 1s state, we define the wave func-
tion of the n� excited state of pionic hydrogen:
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 and En
 are the mass and the binding
energy of pionic hydrogen in the n� bound state. Φn
m(�k )
is the wave function of the excited n� state in the mo-
mentum representation, where n is the principle quantum
number, � is the angular momentum � = 0, 1, . . . , n−1 and
m is the magnetic quantum number m = 0,±1, . . . ,±�.

The wave function of pionic hydrogen in the coordinate
representation Ψn
m(�r ) is equal to [17]
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defined by [17]
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and Y
m(ϑ, ϕ) are spherical harmonics normalized by∫
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where dΩ = sinϑdϑdϕ is a solid angle.
In the momentum representation the wave function
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where j
(kr) are spherical Bessel functions [18],
Y
m(ϑk, ϕk) and Φn
(k) are spherical harmonics and ra-
dial wave functions in momentum space. The radial wave
functions Φn
(k) are defined as

Φn
(k) =
√
4π

∫ ∞

0

j
(kr)Rn
(r)r2dr. (2.10)

Now we are able to proceed to calculating the energy level
displacement of the excited n� state of pionic hydrogen.

3 Shift of energy level of excited n� state

The shift of the energy level εn
 of the excited n� state of
pionic hydrogen we define as [11]
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where Lstr(x) is an effective total Lagrangian of strong
low-energy interactions. For the quantum field theoretic
and model-independent calculation of the shift of the en-
ergy level of the n� state of pionic hydrogen we will not
specify Lstr(x) in terms of interpolating fields of the cou-
pled mesons and baryons. We would like to emphasize
that Lstr(x) is a total effective Lagrangian accounting for
all strong low-energy interactions. In other words, this ef-
fective Lagrangian defines the Tstr-matrix of strong low-
energy interactions
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∫
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obeying the unitary condition [19,16]
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This means that the matrix element of the effective La-
grangian Lstr(0) between the states |π−p〉 defines a phys-
ical amplitude of π−p scattering [11]

〈π−p|Lstr(0)|π−p〉 = 1
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where T 1/2 and T 3/2 are the amplitudes of πN scattering
with isotopic spin I = 1/2 and I = 3/2, respectively.

According to [11], the shift of the energy level of the
n� state, expressed in terms of the matrix element of the
effective Lagrangian Lstr(0), reads
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Since there is no spin-flip in the low-energy transition π−+
p→ π−+p, the amplitude of π−p scattering is determined
by [20,21]
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where
√
s is the total energy in the s-channel of π−p scat-

tering, P
 ′(cosϑ) are Legendre polynomials [18] and ϑ is
the angle between the relative momenta �k and �q. The am-
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 ′+(

√
kq) and f
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ing in the states with a total momentum J = � ′+1/2 and
J = � ′ − 1/2. They are defined by the phase shifts [20,21]
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Near threshold k, q → 0 the amplitudes f
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kq) are defined by the � ′-wave scattering lengths

of π−p scattering [21]
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Substituting (3.7) and (3.9) in (3.6) and integrating over
the solid angles, we get the shift of the energy level of the
excited n� state:
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This is a generalization of the DGBT formula to any ex-
cited n� state of pionic hydrogen.
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The �-wave scattering lengths aπ−p→π−p

± are related to

the �-wave scattering lengths aI

±, for I = 1/2 and I = 3/2

as
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For the ground state n = 1 and � = 0 the expression (3.10)
with (3.11) reduces to the DGBT formula (1.1) [11].

4 Width of energy level of excited n� state

According to [11], the width Γn
 of the energy level of the
excited n� state is defined by
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For the subsequent calculation it is convenient to rewrite
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(� ′ + 1) f
 ′+(

√
kQ) + � ′ f
 ′−(

√
kQ)

]

×

 ′∑

m ′=−
 ′

4π
2� ′ + 1

Y ∗

 ′m ′(ϑ�Q, ϕ�Q)Y
 ′m ′(ϑ�k, ϕ�k), (4.3)

Near threshold the amplitudes f
 ′+(
√
kQ) and f
 ′−(

√
kQ)

are defined by the � ′-wave scattering lengths of the π−p→
π0n scattering [21]:

f
 ′+(
√
kQ) = aπ−p→π0n


 ′+ (kQ) 
 ′
,

f
 ′−(
√
kq) = aπ−p→π0n


 ′− (kQ) 
 ′
. (4.4)

The � ′-wave scattering lengths aπ−p→π0n

 ′± are related

to the � ′-wave scattering lengths aI

 ′± for I = 1/2 and

I = 3/2 as

aπ−p→π0n

 ′± =

√
2
3

(
a
3/2

 ′± − a

1/2

 ′±

)
. (4.5)

Substituting (4.3) and (4.4) in (4.2) and integrating over
the solid angles and the phase volume we arrive at the
expression

Γn
 =
4π
µ

[
(�+ 1) aπ−p→π0n


+ + � aπ−p→π0n

−

2�+ 1

]2

Q 2
+1
n


×
∣∣∣∣∣
∫

d3k

(2π)3
mπ−mp√

Eπ−(k)Ep(k)
k 
 Φn
(k)

∣∣∣∣∣
2

, (4.6)

where Qn
 is a relative momentum of the π0n pair

Qn
=
√

2mπ0mn

mπ0+mn
(mπ−+mp−mπ0−mn + En
), (4.7)

where mπ0 = 134.977MeV and mn = 939.565MeV [10].
This is a generalization of the DGBT formula to any

excited n� state of pionic hydrogen. For the ground state
n = 1 and � = 0 we arrive at the DGBT formula (1.1).

5 Energy level displacement of excited np
state

The analysis of experimental data obtained by the PSI
Collaboration demands the knowledge of the energy level
displacements of the excited np states. For � = 1 from
formulas (3.10) and (4.6) one gets

εnp = −2π
µ

1
3

(
2 aπ−p→π−p

P+ + aπ−p→π−p
P−

)

×
∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k Φnp(k)

∣∣∣∣∣
2

=

−2π
9

1
µ

[
2
(
2a1/2

P+ + a
1/2
P−

)
+

(
2a3/2

P+ + a
3/2
P−

)]

×
∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k Φnp(k)

∣∣∣∣∣
2

,
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Γnp =
4π
9
Q3

np

µ

(
2 aπ−p→π0n

P+ + aπ−p→π0n
P−

)2

×
∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k Φnp(k)

∣∣∣∣∣
2

=

8π
81

Q3
np

µ

[(
2a3/2

P+ + a
3/2
P−

)
−

(
2a1/2

P+ + a
1/2
P−

)]2

×
∣∣∣∣∣
∫

d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k Φnp(k)

∣∣∣∣∣
2

, (5.1)

where aI
P+ and aI

P− are the P -wave scattering lengths of
πN scattering with isospin I and total momentum J =
3/2 and J = 1/2, respectively [20,21].

The integral over k is calculated in the appendix. The
result reads∫

d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k Φnp(k) =

√
n2 − 1
πn5a5

B

. (5.2)

Substituting (5.2) in (5.1), we obtain the shift and the
width of the energy level of the excited np state. They
read

εnp = − 2
9
α5

n3

(
1− 1

n2

) (
mπ−mp

mπ− +mp

)4

×
[
2
(
2a1/2

P+ + a
1/2
P−

)
+

(
2a3/2

P+ + a
3/2
P−

)]
,

Γnp
8
81

α5

n3

(
1− 1

n2

) (
mπ−mp

mπ− +mp

)4

×
[(
2a3/2

P+ + a
3/2
P−

)
−

(
2a1/2

P+ + a
1/2
P−

)]2

×
[
2mπ0 mn

mπ0+mn
(mπ−+mp−mπ0−mn+Enp)

]3/2

.

(5.3)

The shift and the width of the energy level of the np ex-
cited state (5.3) can be rewritten in the equivalent form

εnp

Enp
= +

4
n

(
1− 1

n2

)
Aπ−p→π−p

P

a3
B

,

Γnp

Enp
= − 8

n

(
1− 1

n2

) (
Aπ−p→π0n

P

)2

a3
B

Q3
np, (5.4)

where Enp = −α/2aBn
2 is the binding energy of the ex-

cited np state and

Aπ−p→π−p
P =

1
9

[
2
(
2a1/2

P++a
1/2
P−

)
+

(
2a3/2

P++a
3/2
P−

)]
,

Aπ−p→π0n
P =

√
2
9

[(
2a3/2

P++a
3/2
P−

)
−

(
2a1/2

P++a
1/2
P−

)]
(5.5)

are the P -wave scattering lengths of π−p scattering [9].
The ratio εnp/Enp in (5.4) is in analytical agreement
with the result obtained by Ericson and Weise (see [9],
eq. (6.29)).

In order to estimate the values of the shift and width of
the excited np state we use the experimental data on the
P -wave scattering lengths compiled in table 5.3 of ref. [21]
(Höhler 78, input: Karlsruhe-Helsinki analysis 78):

a
1/2
P− = (−0.082± 0.002)m−3

π− ,

a
1/2
P+ = (−0.032± 0.001)m−3

π− ,

a
3/2
P− = (−0.044± 0.001)m−3

π− ,

a
3/2
P+ = (+0.215± 0.003)m−3

π− ,

2
(
2a1/2

P++a
1/2
P−

)
+

(
2a3/2

P++a
3/2
P−

)
=(0.094± 0.008)m−3

π− ,(
2a3/2

P++a
3/2
P−

)
−

(
2a1/2

P++a
1/2
P−

)
=(0.532± 0.007)m−3

π− .

(5.6)

This yields

εnp = − 1
n3

(
1− 1

n2

)
× (3.47± 0.30)× 10−5 eV,

Γnp =
1
n3

(
1− 1

n2

)
× (3.71± 0.10)× 10−7 eV. (5.7)

Thus, the values of the energy level displacements of the
excited np states of pionic hydrogen are much smaller than
10−5 eV 3. The experimental value of the energy level dis-
placement of the ground state of pionic hydrogen is equal
to [2]

εexp
1s = − 7.108± 0.036 eV,

Γ exp
1s = 0.868± 0.054 eV (5.8)

with an accuracy about 0.5% and 6.2% for the shift and
the width, respectively.

The level of accuracy in a new set of experiments is
about 0.2%, i.e. (∆exp

shift = ±0.014 eV), for the energy level
shift and 1%, i.e. (∆exp

width = ±0.009 eV), for the energy
level width [1]. Hence, according to (5.7), the contribu-
tions of the energy level displacements of the excited np
states to the transitions np → 1s with n = 2, 3, 4 can be
neglected, since |∆exp

shift| � |εnp| and |∆exp
width| � Γnp.

6 Energy shift of ground state caused by
(π−p)ns → (π−p)1s and (π−p)Coul → (π−p)1s

transitions

In this section we calculate the shift of the energy level
of the ground state of pionic hydrogen δε1s caused by the
(π−p)ns → (π−p)1s and (π−p)Coul → (π−p)1s transitions
induced by strong low-energy interactions, where (π−p)ns

is a bound ns state of the π−p pair and (π−p)Coul is the
π−p pair, coupled by the attractive Coulomb field in the

3 For pionium, the bound π−π+ state, the shift of the en-
ergy level of the np state has been recently calculated by Julia
Schweizer [22] within Chiral Perturbation Theory [13].
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δε
(ds)
1s =

∑
αp=±1/2

P
∫

d3k

(2π)3
Φ∗

1s(k)√
2Eπ−(k)2Ep(k)

∫
d3Q

(2π)3
Φ1s(Q)√

2Eπ−(Q)2Ep(Q)

× 〈π−(�k )p(−�k, σp)|Lstr(0)|p(− �Q, σp)π
−( �Q )〉〈π−(�P )p(−�P , σp)|Lstr(0)|p(−�q, σp)π

−(�q )〉
Eπ−(k) + Ep(k)− Eπ−(Q)− Ep(Q)

×
∫
d3P

(2π)3
Φ∗

1s(P )√
2Eπ−(P )2Ep(P )

∫
d3q

(2π)3
Φ1s(q)√

2Eπ−(q)2Ep(q)

+
∑

αp=±1/2

∞∑
n=2

P
∫

d3k

(2π)3
Φ∗

1s(k)√
2Eπ−(k)2Ep(k)

∫
d3Q

(2π)3
Φns(Q)√

2Eπ−(Q)2Ep(Q)

× 〈π−(�k )p(−�k, σp)|Lstr(0)|p(− �Q, σp)π
−( �Q )〉〈π−(�P )p(−�P , σp)|Lstr(0)|p(−�q, σp)π

−(�q )〉
Eπ−(k) + Ep(k) + E1s − Eπ−(Q)− Ep(Q)− Ens

×
∫
d3P

(2π)3
Φ∗

ns(P )√
2Eπ−(P )2Ep(P )

∫
d3q

(2π)3
Φ1s(q)√

2Eπ−(q)2Ep(q)
, (6.3)

S-state with a continuous energy spectrum [15]. According
to [11] the correction δε1s reads

δε1s = − 1

2M (1s)
A

i

2

∫
d4x 〈A(1s)

πp (�P , σp)

×|T(Lstr(x)Lstr(0))|A(1s)
πp (�P , σp)〉

∣∣∣
�P=0

. (6.1)

First, we consider the contribution of the discrete spec-
trum. For this aim, we use a unit operator which we define
as

1̂ =
∑

αp=±1/2

∞∑
n=1

n−1∑

=0


∑
m=−


1
(2π)3

×
∫

d3Q

2E(n
)
A ( �Q )

|A(n
m)
πp ( �Q, αp)〉〈A(n
m)

πp ( �Q, αp)|.

(6.2)

Following [11] and using a unit operator (6.2) for the de-
scription of the intermediate states in (6.1), and integrat-
ing over angular degrees of freedom, we get

see eq. (6.3) above

where the abbreviation (ds) means the discrete spectrum
and P stands for the calculation of the principle value of
the integral.

Due to the wave functions of pionic hydrogen the inte-
grands in the r.h.s. of (6.3) can be taken at the low-energy
limit [11]. This yields

δε
(ds)
1s =

8π2

9
1
µ

(
2a1/2

0 + a
3/2
0

)2

|Ψ1s(0)|2

×P
∫

d3k

(2π)3
d3Q

(2π)3
Φ∗

1s(k)Φ1s(Q)
k2 −Q2

+
4π2

9

× 1
µ2

(
2a1/2

0 +a3/2
0

)2 ∞∑
n=2

|Ψ∗
ns(0)Ψ1s(0)|2
E1s − Ens

. (6.4)

Since in the momentum representation the wave function
of the ground state of pionic hydrogen can be taken real,

Φ∗
1s(k) = Φ1s(k), the integrand of the first term in the

r.h.s. of (6.4) is antisymmetric under the change of vari-
ables k ←→ Q. Hence, the integral over �k and �Q should
vanish.

Thus, the shift of the energy level of the ground state,
caused by the ns→ 1s transitions, is defined by

δε
(ds)
1s =

4π2

9
1
µ2

(
2a1/2

0 + a
3/2
0

)2 ∞∑
n=2

|Ψ∗
ns(0)Ψ1s(0)|2
E1s − Ens

.

(6.5)
Setting Ψ1s(0) = 1/

√
πa3

B, Ψns(0) = 1/
√
πn3a3

B, E1s =
−α/2aB and Ens = −α/2aBn

2, we get

δε
(ds)
1s = −8

9
α4 µ3

(
2a1/2

0 + a
3/2
0

)2 ∞∑
n=2

1
n(n2 − 1)

=

−2
9
α4 µ3

(
2a1/2

0 + a
3/2
0

)2

. (6.6)

The contribution of the continuous spectrum of the π−p
pair, coupled by the attractive Coulomb field in the S-
wave state, can be determined by

δε
(cs)
1s =

4π2

9
1
µ2

(
2a1/2

0 + a
3/2
0

)2

|Ψ1s(0)|2
∫ ∞

0

dE
|ΨE(0)|2
E1s − E

,

(6.7)
where the abbreviation (cs) means the continuous spec-
trum. The wave function ΨE(�r ) of the π−p pair, coupled
by the attractive Coulomb fields in the S-wave state with
a continuous energy spectrum, is equal to [17,23]

ΨE(�r ) =

√
1
4π

αµ2

1− e−2παµ/k
F

(
1 + i

αµ

k
, 2, 2ikr

)
, (6.8)

where k =
√
2µE and F (a, b, z) is a confluent hypergeo-

metric function [18]. The wave function ΨE(�r ) is normal-
ized by ∫

d3xΨ∗
E ′ (�r )ΨE(�r ) = δ(E ′ − E). (6.9)
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At �r = 0, we get [17,23]

|ΨE(0)|2 = 1
4π

αµ2

1− e− 2παµ/k
, (6.10)

Substituting (6.10) into (6.7) and changing variables E →
k2/2µ, we obtain

δε
(cs)
1s = − 2π

9
α

(
2a1/2

0 + a
3/2
0

)2

|Ψ1s(0)|2

×
∫ ∞

0

dk k
k2 + α2µ2

1

1− e− 2παµ/k
. (6.11)

The integral over k is divergent. As has been shown in [11],
it should be regularized by a cut-off K = αµ. A divergent
part can be removed by a renormalization of the reduced
mass of the π−p pair. The regularized contribution of the
continuous spectrum to the shift of the energy level of the
ground state of pionic hydrogen reads

δε
(cs)
1s = − 2π

9
α

(
2a1/2

0 + a
3/2
0

)2

|Ψ1s(0)|2

×
∫ αµ

0

dk k
k2 + α2µ2

1

1− e− 2παµ/k
. (6.12)

Dropping the contribution of the exponential, which is
insignificant in the physical region of relative momenta 4,
we get

δε
(cs)
1s = − π

9
α �n2

(
2a1/2

0 + a
3/2
0

)2

|Ψ1s(0)|2 =

−�n2
9

α4 µ3
(
2a1/2

0 + a
3/2
0

)2

. (6.13)

Thus, the total correction δε1s = δε
(ds)
1s + δε

(cs)
1s to the

shift of the energy level of the ground state, caused by the
ns → 1s transitions and the continuous spectrum of the
π−p pair coupled by the attractive Coulomb field in the
S-wave state, is equal to

δε1s = − 2
9

(
1 +

1
2
�n2

)
α

(
2a1/2

0 + a
3/2
0

)2

|Ψ1s(0)|2 =

= −2
9

(
1 +

1
2
�n2

)
α4 µ3

(
2a1/2

0 + a
3/2
0

)2

. (6.14)

Comparing δε1s with the DGBT formula we obtain

δε1s

ε1s
=
α

3

(
1 +

1
2
�n2

)
µ

(
2a1/2

0 + a
3/2
0

)
=

0.76× 10−3 = 0.076%, (6.15)

where we have used the experimental values of the S-wave
scattering lengths a1/2

0 and a3/2
0 [2]:

a
1/2
0 = (+0.1788± 0.0043)m−1

π− ,

a
3/2
0 = (−0.0927± 0.0085)m−1

π− ,

2a1/2
0 + a

3/2
0 = (+0.2649± 0.0121)m−1

π− . (6.16)

4 A maximum value the exponential acquires at the upper

limit. Setting k = αµ, one gets e− 2παµ/k = 1.87× 10−3 that
is less than 0.2%.

As has been calculated in [11], the contribution to the
shift of the energy level of the ground state to the second
order in strong low-energy interactions ε(2)1s relative to the
DGBT result is equal to

δ
(2)
1s =

ε
(2)
1s

ε1s
=

2α
π
µ
2
(
a
1/2
0

)2

+
(
a
3/2
0

)2

2a1/2
0 + a

3/2
0

=

(1.11± 0.06)× 10−3 = (0.111± 0.006)%. (6.17)

Therefore, a total contribution to the shift of the energy
level of the ground state of pionic hydrogen caused by
strong low-energy interactions makes up (0.187±0.007)%.
Hence, it does not exceed the experimental accuracy 0.2%
of the new set of experiments by the PSI Collaboration [1].

7 Conclusion

Within a quantum field theoretic, relativistic covariant
and model-independent approach, we have derived the en-
ergy level displacement of the excited n� state of pionic
hydrogen in terms of the partial-wave scattering lengths
of πN scattering. We have given the explicit calculation
of the energy level displacements of the excited np states
in terms of the P -wave scattering lengths of π−p scatter-
ing. The shift of the energy level of the excited np state is
found in analytical agreement with the result obtained by
Ericson and Weise [9]. We have shown that the contribu-
tions of the energy level displacements of the np states to
the transitions np→ 1s are much less than the experimen-
tal accuracy of 0.2% [1]. Therefore, they can be neglected
for the extraction of the experimental value of the energy
level displacement of the ground state of pionic hydrogen
from the np→ 1s transitions.

We have given numerical values only for the energy
level displacements of the excited np states. These numer-
ical values are needed for the theoretical elaboration of
experimental data on the np → 1s transitions of pionic
hydrogen, used by the PSI Collaboration for the measure-
ments of the energy level displacement of the ground state
of pionic hydrogen [1]. Experimentally, there are measured
only scattering lengths of πN scattering in the P (� = 1),
D (� = 2) and F (� = 3) wave states [21]. The D- and
F -wave scattering lengths are by factors of 10 and 100,
respectively, smaller compared with the P -wave scatter-
ing lengths [21]. Hence, the energy level displacements of
the excited n� states for � ≥ 2 are negligibly smaller com-
pared with the energy level displacements of the excited
np states. It is obvious that for the contemporary level of
accuracy of experimental technique the energy level dis-
placements of the excited n� states with � ≥ 1 cannot
be practically measured, and the contributions of them
should be neglected for the extraction of the experimental
value of the energy level displacement of the ground state
of pionic hydrogen from the n�→ 1s transitions.

We have calculated the contribution of the ns → 1s
transitions and the continuous spectrum of the π−p pair,
coupled by the attractive Coulomb field in the S-wave
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state, to the shift of the energy level of the ground state
of pionic hydrogen induced by strong low-energy interac-
tions. The numerical value of this contribution relative to
the DGBT expression makes up 0.076%. Taking into ac-
count the result obtained in [11], the total shift of the
energy level of the ground state of pionic hydrogen to the
second order of perturbation theory in strong low-energy
interactions makes up 0.187%. This does not exceed the
experimental accuracy 0.2% of the new set of experiments
on the energy level displacement of the ground state of
pionic hydrogen by the PSI Collaboration [1].

The obtained results confirm that the contributions of
QCD isospin-breaking and electromagnetic interactions,
calculated by Gasser et al. [12] (see also [8]), are the most
important for the precise extraction of the S-wave scatter-
ing lengths of πN scattering from the experimental data
on the energy level displacement of the ground state of
pionic hydrogen.

We are grateful to our referee for useful comments and to Tor-
leif Ericson for numerous helpful discussions and for calling our
attention to the results obtained in refs. [5,6] and [8,9].

Appendix A. Calculation of momentum
integral in (5.1)

In this appendix we give an explicit calculation of the
momentum integral in (5.1). The wave function Φnp(k) is
defined by (2.10). Substituting (2.10) in the momentum
integral in (5.1), we get

∫
d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k Φnp(k) =

1
π3/2

∫ ∞

0

dr r2Rn1(r)
∫ ∞

0

dk
√

mπ−mp

Eπ−(k)Ep(k)
k3 j1(kr).

(A.1)

For the spherical Bessel function j1(kr) we use the expres-
sion [24]

j1(kr) = − d
dr

1
r

( sin kr
k2

)
. (A.2)

The integration over k we carry out in the limit mp → ∞.
This yields

∫ ∞

0

dk
√

mπ−mp

Eπ−(k)Ep(k)
k3 j1(kr) =

∫ ∞

0

dk
√

mπ−

Eπ−(k)
k3 j1(kr) =

√
mπ−

d
dr

1
r

d
dr

∫ ∞

0

dk cos(kr)
(m2

π− + k2)1/4
=

mπ−
21/4

√
π

Γ (1/4)
d
dr

1
r

d
dr

(mπ−r)−1/4K1/4(mπ−r), (A.3)

where we have used the formula [25]

Kν(xz) = Γ

(
ν +

1
2

)
(2z)ν√
π xν

∫ ∞

0

cos(xt)dt
(t2 + z2)ν+1/2

. (A.4)

Due to the appearance of the McDonald function
K1/4(mπ−r) the integrand of the integral over r is local-
ized around r ∼ 1/mπ− . This allows to take the wave
function Rn1(r) equal to

Rn1(r) = r
2
3

√
n2 − 1

n5/2a
5/2
B

. (A.5)

Substituting (A.3) and (A.5) in (A.1) we get∫
d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k Φnp(k) =

1
3π

√
n2 − 1

n5/2a
5/2
B

25/4

Γ (1/4)

×
∫ ∞

0

dxx3 d
dx

(
1
x

(
d
dx
x−1/4K1/4(x)

))
, (A.6)

where x = mπ−r. Using the relation [26]

1
x

(
d
dx
x−1/4K1/4(x)

)
= −x−5/4K5/4(x) , (A.7)

we transform the integral over x to the form∫ ∞

0

dxx3 d
dx

(
1
x

(
d
dx
x−1/4K1/4(x)

))
=

−
∫ ∞

0

dxx3 d
dx

(
x−5/4K5/4(x)

)
=

3
∫ ∞

0

dxx3/4K5/4(x)=3 · 2−1/4Γ

(
3
2

)
Γ

(
1
4

)
, (A.8)

where we have used the formula [27]∫ ∞

0

dxxµKν(x) = 2µ−1 Γ

(
µ+ ν + 1

2

)
Γ

(
µ− ν + 1

2

)
.

(A.9)
Substituting (A.8) in (A.6), we get

∫
d3k

(2π)3

√
mπ−mp

Eπ−(k)Ep(k)
k Φnp(k) =

√
n2 − 1
πn5a5

B

. (A.10)

Using this result, we calculate the energy level displace-
ment of the excited np state of pionic hydrogen (see
sect. 5).
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2. H.-Ch. Schröder et al., Eur. Phys. J. C 21, 473 (2001).
3. S. Deser, M.L. Goldberger, K. Baumann, W. Thirring,
Phys. Rev. 96, 774 (1954).

4. T.L. Trueman, Nucl. Phys. 26, 57 (1961).
5. A. Partensky, M. Ericson, Nucl. Phys. B 1, 382 (1967).
6. E. Lambert, Helv. Phys. Acta 42, 667 (1969).
7. A. Deloff, Phys. Rev. C 13, 730 (1976).



422 The European Physical Journal A

8. B. Loiseau, T.E.O. Ericson, A.W. Tomas, PiN Newslett.
15, 162 (1999), hep-ph/0002056; Nucl. Phys. A 663, 541
(2000), hep-ph/9907433; 684, 380 (2001); T.E.O. Eric-
son, B. Loiseau, A.W. Thomas, Phys. Rev. C 66, 014005
(2002), hep-ph/0009312; T.E.O. Ericson, B. Loiseau, S.
Wycech, Nucl. Phys. A 721, 653c (2003), hep-ph/0211433;
T.E.O. Ericson, B. Loiseau, S. Wycech, Determination of
the π−p scattering length from pionic hydrogen, invited
talk at the Workshop on Hadatom03 at ECT∗ in Trento,
12-18 October 2003, Italy; hep-ph/030134.

9. T.E.O. Ericson, W. Weise, in Pions and Nuclei (Clarendon
Press, Oxford, 1988) pp. 192-198.

10. K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
11. A.N. Ivanov, M. Faber, A. Hirtl, J. Marton, N.I. Troit-

skaya, Eur. Phys. J. A 18, 653 (2003), nucl-th/0306047.
12. J. Gasser, M.A. Ivanov, E. Lipartia, M. Mojžǐs, A. Ruset-
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